Crystal Structure

Communications

Anhydrous polymeric zinc(II) octanoate

Françoise Lacouture,* Jerôme Peultier, Michel François and Jean Steinmetz

Laboratoire de Chimie du Solide Minérale, UMR 7555, Université Henri Poincaré, Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre lés Nancy CEDEX, France Correspondence e-mail: francoise.lacouture@lcsm.u-nancy.fr

Received 15 November 1999
Accepted 3 February 2000
The structure of the title compound, poly[zinc(II)-bis $(\mu$ -octanoato- $\left.\left.O: O^{\prime}\right)\right],\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{2}\right)_{2}\right]_{n}$, consists of polymeric sheets parallel to (100) in which tetrahedrally coordinated Zn^{2+} cations are connected by carboxylate bridges in a synanti arrangement.

Comment

The elucidation of the structure of the title compound, (I), follows that already performed for zinc heptanoate, (II) (Peultier et al., 1999). It was undertaken to characterize as well as possible these metal soaps which protect zinc surfaces against corrosion, and to understand the evolution of the structural properties in the $\mathrm{Zn}\left(\mathrm{C}_{n} \mathrm{H}_{2 n-1} \mathrm{O}_{2}\right)_{2}$ series according to n, the number of C atoms in the aliphatic chain.

(I)

Compound (I) clearly shows the structural features of the previously known members of the series, namely, $n=2$ (acetate; Clegg et al., 1987; Frada, 1992), $n=3$ (propionate; Clegg et al., 1986), $n=4$ (butanoate; Blair et al., 1993) and $n=6$ (hexanoate; Segedin et al., 1999). The structure is layered, as shown in Fig. 1. Each Zn atom is tetrahedrally coordinated by O atoms belonging to four different octanoate groups (Fig. 2). The Zn tetrahedra are connected by syn-anti bridges of the octanoate groups, thus forming layers parallel to (100). The chains constituted by the $\mathrm{C} 2 n$ atoms form an angle of approximately 60°, confirming the tendency of these angles to decrease when n increases (Peultier et al., 1999).

It is mainly the stacking mode of the layers which varies according to n. For example, the addition of a C atom in going from zinc heptanoate to zinc octanoate results in the structure changing from one in which the planes containing the $\mathrm{C} 2 n$

Figure 1
Projection of the structure of (I) along [010] (ATOMS for Windows; Dowty, 1995). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
chains of two adjacent layers form an angle of approximately 120° to one in which they are parallel. The structure of (I) (Pc) can be deduced from that of (II) $\left[P b c 2_{1}, a=4.7651\right.$ (6), $b=$ 9.3404 (15) and $c=37.066$ (6) Å] by carrying out a rotation of 180° of a layer on two around the c axis, followed by a translation of $4.14 \AA$ along the b axis. This modification in stacking involves the loss of the 2_{1} axis parallel with the c axis and of the c glide mirror perpendicular to the b axis, but preserves the b glide mirror perpendicular to the a axis. According to the orientation used to describe the structure of (I), the element of symmetry which is preserved is a c glide mirror perpendicular to the monoclinic b axis, which for (I) leads to a non-centrosymmetric and monoclinic structure ($P c$).

Figure 2
The $\mathrm{Zn}^{\text {II }}$ tetrahedral environment in (I) showing the orientation of the linear octanoate chains. Displacement ellipsoids are drawn at the 50% probability level (ATOMS for Windows; Dowty, 1995). Symmetry codes are as given in Table 1. H atoms have been omitted for clarity.

Experimental

Anhydrous zinc(II) octanoate was synthesized by adding a solution of sodium octanoate in aqueous medium to a weakly acidic solution of zinc nitrate (pH 5.5). The precipitate, (I), was washed with distilled water and dried. Finally, compound (I) was recrystallized from ethanol at room temperature. Colourless crystals appeared as small plates with well developed (100) faces.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=351.79$
Monoclinic, $P c$
$a=21.093(2) \AA$
$b=4.6905(3) \AA$
$c=9.2544(9) \AA$
$\beta=101.323(3)^{\circ}$
$V=897.78(14) \AA^{3}$
$Z=2$

Data collection

Nonius CCD area detector diffractometer
CCD scans
Absorption correction: empirical, fitted by spherical harmonic functions (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.751, T_{\text {max }}=0.976$
14913 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.167$
$S=1.002$
2984 reflections
191 parameters
H -atom parameters constrained
$D_{x}=1.301 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 62153
\quad reflections
$\theta=0.998-27.49^{\circ}$
$\mu=1.380 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Plate, colourless
$0.30 \times 0.20 \times 0.02 \mathrm{~mm}$
$D_{x}=1.301 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 62153
reflections
$\theta=0.998-27.49^{\circ}$
$\mu=1.380 \mathrm{~mm}^{-1}$
$T=150$ (2) K
$0.30 \times 0.20 \times 0.02 \mathrm{~mm}$

1574 independent reflections (plus
1410 Friedel-related reflections)
2231 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.095$
$\theta_{\text {max }}=24.74^{\circ}$
$h=-24 \rightarrow 24$
$k=-5 \rightarrow 5$
$l=-10 \rightarrow 10$

H atoms were placed geometrically but their parameters were not refined. Their individual isotropic displacement parameters were fixed $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR 92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS for Windows (Dowty, 1995); software used to prepare material for publication: WINWORD (Version 5.0).

The authors are grateful to the Services Communs de Diffractométrie Automatique of the University Henri Poincaré.

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

$\mathrm{Zn}-\mathrm{O} 12$	$1.965(6)$	$\mathrm{Zn}-\mathrm{O} 21^{\mathrm{ii}}$	$1.988(6)$
$\mathrm{Zn}-\mathrm{O} 22$	$1.966(5)$	$\mathrm{O} 21-\mathrm{C} 11$	$1.272(11)$
$\mathrm{Zn}-\mathrm{O} 11^{\mathrm{i}}$	$1.971(6)$	$\mathrm{O} 12-\mathrm{C} 11$	$1.242(11)$
$\mathrm{O} 12-\mathrm{Zn}-\mathrm{O} 22$	$112.8(3)$	$\mathrm{O} 12-\mathrm{C} 11-\mathrm{O} 11$	$120.4(8)$
$\mathrm{O} 12-\mathrm{Zn}-\mathrm{O} 11^{\mathrm{i}}$	$105.1(3)$	$\mathrm{O} 12-\mathrm{C} 11-\mathrm{C} 12$	$118.9(8)$
$\mathrm{O} 22-\mathrm{Zn}-\mathrm{O} 11^{\mathrm{i}}$	$102.5(2)$	$\mathrm{O} 11-\mathrm{C} 11-\mathrm{C} 12$	$120.7(8)$
$\mathrm{O} 12-\mathrm{Zn}-\mathrm{O} 21^{\mathrm{ii}}$	$115.6(3)$	$\mathrm{C} 21-\mathrm{O} 21-\mathrm{Zn}$	$112.0(6)$
$\mathrm{O} 22-\mathrm{Zn}-\mathrm{O} 21^{\mathrm{ii}}$	$103.2(2)$	$\mathrm{C} 21-\mathrm{O} 22-\mathrm{Zn}$	$128.3(5)$
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Zn}-\mathrm{O} 21^{\mathrm{ii}}$	$117.1(3)$	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{O} 22$	$121.1(8)$
$\mathrm{C} 11-\mathrm{O} 11-\mathrm{Zn}$		$133.0(6)$	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22$
$\mathrm{C} 11-\mathrm{O} 12-\mathrm{Zn}$	$114.3(6)$	$\mathrm{O} 22-\mathrm{C} 21-\mathrm{C} 22$	$118.2(8)$

Symmetry codes: (i) $x, 1+y, z$; (ii) $x,-y, z-\frac{1}{2}$; (iii) $x, y-1, z$; (iv) $x,-y, \frac{1}{2}+z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1351). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blair, J., Howie, R. A. \& Wardell, J. L. (1993). Acta Cryst. C49, 219-221.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Clegg, W., Little, I. R. \& Straughan, B. R. (1986). Acta Cryst. C42, 1701-1703.
Clegg, W., Little, I. R. \& Straughan, B. R. (1987). Acta Cryst. C43, 456-457.
Dowty, E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663. USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Frada, J. M. (1992). PhD thesis (No. 92/NAN1/0408), University of Nancy, France.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Peultier, J., Francois, M. \& Steinmetz, J. (1999). Acta Cryst. C55, 2064-2065.
Segedin, P., Lah, N., Zefran, M., Leban, I. \& Golic, L. (1999). Acta Chim. 46, 173-184.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen. Germany.

